Recent Posts



ACL Study in Young Athletes Highlights Importance of Functional Recovery!

New study highlighted by Trent Nessler in his LinkedIn account shows a decrease in Knee Function after 2 years for Young Athletes who had Anterior Cruciate Ligament Reconstruction and showed Single-Leg Landing Asymmetric's! Highlights are below, link to get the study here


Previous work shows that young athletes after anterior cruciate ligament reconstruction (ACLR) demonstrate single-leg (SL) landing movement asymmetries at the time of return to sport (RTS); however, the effect of movement asymmetries on longitudinal knee-related function after ACLR has not been examined. Hypothesis/Purpose: The purpose of this study was to examine the effect of SL drop-landing movement symmetry at the time of RTS on knee-related function 2 years later in young athletes after ACLR. The first hypothesis was that young athletes who demonstrated SL drop-landing asymmetries at RTS would demonstrate decreased knee function 2 years later compared with those who demonstrated symmetric SL drop-landing mechanics. The second hypothesis was that SL drop-landing movement symmetry at RTS would be associated with knee functional recovery 2 years later.


Cohort study; Level of evidence, 2.


This study included 48 young athletes who had undergone ACLR and were assessed at the time of RTS (77% female; mean [±SD] age at RTS, 17.6 ± 2.6 years) and followed for 2 years after RTS. Three sagittal-plane landing variables of interest were calculated using 3-dimensional motion analysis during an SL drop-landing task at the time of RTS: knee flexion excursion, peak internal knee extension moment, and peak trunk flexion. The limb symmetry index (LSI) was calculated for each landing variable using the following: LSI = (involved/uninvolved) × 100%. The LSI was used to divide the cohort into symmetric (SYM) and asymmetric (ASYM) groups for each landing variable: knee flexion excursion (SYM: LSI ≥ 90% [n = 23]; ASYM: LSI < 85% [n = 18]), peak internal knee extension moment (SYM: LSI ≥ 90% [n = 19]; ASYM: LSI < 85% [n = 22]), and peak trunk flexion (SYM: LSI ≤ 105% [n = 25]; ASYM: LSI > 115% [n = 19]). At 2 years after RTS, knee-related function was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee (IKDC) subjective knee form, and performance on SL hop tests. Functional recovery was defined based on literature cutoffs for knee-related functional measures. Differences in 2-year function were compared between the symmetry groups using Mann-Whitney U tests because of nonnormality. Logistic regression was used to determine if landing symmetry at the time of RTS would be associated with 2-year knee functional recovery after RTS.


The ASYM knee flexion excursion group demonstrated decreased function at 2 years after RTS compared with the SYM group on the KOOS-Pain (ASYM: 93.0 ± 8.2; SYM: 98.4 ± 3.0; P = .008) and the KOOS-Quality of Life (ASYM: 81.6 ± 16.1; SYM: 94.1 ± 9.7; P = .008). Knee flexion excursion was associated with knee functional recovery on the KOOS-Pain and the KOOS-Quality of Life ( P = .033 and P = .012, respectively) at 2 years after RTS, after controlling for the quadriceps strength LSI and graft type.


Young athletes after ACLR with asymmetries in knee kinematics at the time of RTS reported decreased self-reported function 2 years later; however, the clinical importance of these differences needs to be further understood.